Use inverse matrices to find the solution of the system of equations. { x+7 y+2 z=9 2 x-4 y+4 z=-18 -x-3 y+2 z=3 . x=□ y=□ z=□ (2025)

`); let searchUrl = `/search/`; history.forEach((elem) => { prevsearch.find('#prevsearch-options').append(`

${elem}

`); }); } $('#search-pretype-options').empty(); $('#search-pretype-options').append(prevsearch); let prevbooks = $(false); [ {title:"Recently Opened Textbooks", books:previous_books}, {title:"Recommended Textbooks", books:recommended_books} ].forEach((book_segment) => { if (Array.isArray(book_segment.books) && book_segment.books.length>0 && nsegments<2) { nsegments+=1; prevbooks = $(`

  • ${book_segment.title}
  • `); let searchUrl = "/books/xxx/"; book_segment.books.forEach((elem) => { prevbooks.find('#prevbooks-options'+nsegments.toString()).append(`

    ${elem.title} ${ordinal(elem.edition)} ${elem.author}

    `); }); } $('#search-pretype-options').append(prevbooks); }); } function anon_pretype() { let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_ANON')); }catch(e) {} if ('previous_books' in prebooks && 'recommended_books' in prebooks) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (typeof PREVBOOKS !== 'undefined' && Array.isArray(PREVBOOKS)) { new_prevbooks = PREVBOOKS; previous_books.forEach(elem => { for (let i = 0; i < new_prevbooks.length; i++) { if (elem.id == new_prevbooks[i].id) { return; } } new_prevbooks.push(elem); }); new_prevbooks = new_prevbooks.slice(0,3); previous_books = new_prevbooks; } if (typeof RECBOOKS !== 'undefined' && Array.isArray(RECBOOKS)) { new_recbooks = RECBOOKS; for (let j = 0; j < new_recbooks.length; j++) { new_recbooks[j].viewed_at = new Date(); } let insert = true; for (let i=0; i < recommended_books.length; i++){ for (let j = 0; j < new_recbooks.length; j++) { if (recommended_books[i].id == new_recbooks[j].id) { insert = false; } } if (insert){ new_recbooks.push(recommended_books[i]); } } new_recbooks.sort((a,b)=>{ adate = new Date(2000, 0, 1); bdate = new Date(2000, 0, 1); if ('viewed_at' in a) {adate = new Date(a.viewed_at);} if ('viewed_at' in b) {bdate = new Date(b.viewed_at);} // 100000000: instead of just erasing the suggestions from previous week, // we just move them to the back of the queue acurweek = ((new Date()).getDate()-adate.getDate()>7)?0:100000000; bcurweek = ((new Date()).getDate()-bdate.getDate()>7)?0:100000000; aviews = 0; bviews = 0; if ('views' in a) {aviews = acurweek+a.views;} if ('views' in b) {bviews = bcurweek+b.views;} return bviews - aviews; }); new_recbooks = new_recbooks.slice(0,3); recommended_books = new_recbooks; } localStorage.setItem('PRETYPE_BOOKS_ANON', JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books })); build_popup(); } } var whiletyping_search_object = null; var whiletyping_search = { books: [], curriculum: [], topics: [] } var single_whiletyping_ajax_promise = null; var whiletyping_database_initial_burst = 0; //number of consecutive calls, after 3 we start the 1 per 5 min calls function get_whiletyping_database() { //gets the database from the server. // 1. by validating against a local database value we confirm that the framework is working and // reduce the ammount of continuous calls produced by errors to 1 per 5 minutes. return localforage.getItem('whiletyping_last_attempt').then(function(value) { if ( value==null || (new Date()) - (new Date(value)) > 1000*60*5 || (whiletyping_database_initial_burst < 3) ) { localforage.setItem('whiletyping_last_attempt', (new Date()).getTime()); // 2. Make an ajax call to the server and get the search database. let databaseUrl = `/search/whiletype_database/`; let resp = single_whiletyping_ajax_promise; if (resp === null) { whiletyping_database_initial_burst = whiletyping_database_initial_burst + 1; single_whiletyping_ajax_promise = resp = new Promise((resolve, reject) => { $.ajax({ url: databaseUrl, type: 'POST', data:{csrfmiddlewaretoken: "6aKGkZxoufAZtYjNjmKMm3kBaEs2Pnvw5NQcmh3ikt1TGZLhRdeFepXINPiSlk3V"}, success: function (data) { // 3. verify that the elements of the database exist and are arrays if ( ('books' in data) && ('curriculum' in data) && ('topics' in data) && Array.isArray(data.books) && Array.isArray(data.curriculum) && Array.isArray(data.topics)) { localforage.setItem('whiletyping_last_success', (new Date()).getTime()); localforage.setItem('whiletyping_database', data); resolve(data); } }, error: function (error) { console.log(error); resolve(null); }, complete: function (data) { single_whiletyping_ajax_promise = null; } }) }); } return resp; } return Promise.resolve(null); }).catch(function(err) { console.log(err); return Promise.resolve(null); }); } function get_whiletyping_search_object() { // gets the fuse objects that will be in charge of the search if (whiletyping_search_object){ return Promise.resolve(whiletyping_search_object); } database_promise = localforage.getItem('whiletyping_database').then(function(database) { return localforage.getItem('whiletyping_last_success').then(function(last_success) { if (database==null || (new Date()) - (new Date(last_success)) > 1000*60*60*24*30 || (new Date('2023-04-25T00:00:00')) - (new Date(last_success)) > 0) { // New database update return get_whiletyping_database().then(function(new_database) { if (new_database) { database = new_database; } return database; }); } else { return Promise.resolve(database); } }); }); return database_promise.then(function(database) { if (database) { const options = { isCaseSensitive: false, includeScore: true, shouldSort: true, // includeMatches: false, // findAllMatches: false, // minMatchCharLength: 1, // location: 0, threshold: 0.2, // distance: 100, // useExtendedSearch: false, ignoreLocation: true, // ignoreFieldNorm: false, // fieldNormWeight: 1, keys: [ "title" ] }; let curriculum_index={}; let topics_index={}; database.curriculum.forEach(c => curriculum_index[c.id]=c); database.topics.forEach(t => topics_index[t.id]=t); for (j=0; j

    Solutions
  • Textbooks
  • `); } function build_solutions() { if (Array.isArray(solution_search_result)) { const viewAllHTML = userSubscribed ? `View All` : ''; var solutions_section = $(`
  • Solutions ${viewAllHTML}
  • `); let questionUrl = "/questions/xxx/"; let askUrl = "/ask/question/xxx/"; solution_search_result.forEach((elem) => { let url = ('course' in elem)?askUrl:questionUrl; let solution_type = ('course' in elem)?'ask':'question'; let subtitle = ('course' in elem)?(elem.course??""):(elem.book ?? "")+"    "+(elem.chapter?"Chapter "+elem.chapter:""); solutions_section.find('#whiletyping-solutions').append(` ${elem.text} ${subtitle} `); }); $('#search-solution-options').empty(); if (Array.isArray(solution_search_result) && solution_search_result.length>0){ $('#search-solution-options').append(solutions_section); } MathJax.typesetPromise([document.getElementById('search-solution-options')]); } } function build_textbooks() { $('#search-pretype-options').empty(); $('#search-pretype-options').append($('#search-solution-options').html()); if (Array.isArray(textbook_search_result)) { var books_section = $(`
  • Textbooks View All
  • `); let searchUrl = "/books/xxx/"; textbook_search_result.forEach((elem) => { books_section.find('#whiletyping-books').append(` ${elem.title} ${ordinal(elem.edition)} ${elem.author} `); }); } if (Array.isArray(textbook_search_result) && textbook_search_result.length>0){ $('#search-pretype-options').append(books_section); } } function build_popup(first_time = false) { if ($('#search-text').val()=='') { build_pretype(); } else { solution_and_textbook_search(); } } var search_text_out = true; var search_popup_out = true; const is_login = false; const user_hash = null; function pretype_setup() { $('#search-text').focusin(function() { $('#search-popup').addClass('show'); resize_popup(); search_text_out = false; }); $( window ).resize(function() { resize_popup(); }); $('#search-text').focusout(() => { search_text_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-popup').mouseenter(() => { search_popup_out = false; }); $('#search-popup').mouseleave(() => { search_popup_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-text').on("keyup", delay(() => { build_popup(); }, 200)); build_popup(true); let prevbookUrl = `/search/pretype_books/`; let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_'+(is_login?user_hash:'ANON'))); }catch(e) {} if (prebooks && 'previous_books' in prebooks && 'recommended_books' in prebooks) { if (is_login) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (prebooks.time && new Date().getTime()-prebooks.time<1000*60*60*6) { build_popup(); return; } } else { anon_pretype(); return; } } $.ajax({ url: prevbookUrl, method: 'POST', data:{csrfmiddlewaretoken: "6aKGkZxoufAZtYjNjmKMm3kBaEs2Pnvw5NQcmh3ikt1TGZLhRdeFepXINPiSlk3V"}, success: function(response){ previous_books = response.previous_books; recommended_books = response.recommended_books; if (is_login) { localStorage.setItem('PRETYPE_BOOKS_'+user_hash, JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books, time: new Date().getTime() })); } build_popup(); }, error: function(response){ console.log(response); } }); } $( document ).ready(pretype_setup); $( document ).ready(function(){ $('#search-popup').on('click', '.search-view-item', function(e) { e.preventDefault(); let autoCompleteSearchViewUrl = `/search/autocomplete_search_view/`; let objectUrl = $(this).attr('href'); let selectedId = $(this).data('objid'); let searchResults = []; $("#whiletyping-solutions").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $("#whiletyping-books").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $.ajax({ url: autoCompleteSearchViewUrl, method: 'POST', data:{ csrfmiddlewaretoken: "6aKGkZxoufAZtYjNjmKMm3kBaEs2Pnvw5NQcmh3ikt1TGZLhRdeFepXINPiSlk3V", query: $('#search-text').val(), searchObjects: JSON.stringify(searchResults) }, dataType: 'json', complete: function(data){ window.location.href = objectUrl; } }); }); });
    Use inverse matrices to find the solution of the system of equations.

    {
            x+7 y+2 z=9 
            
            2 x-4 y+4 z=-18 
            
            -x-3 y+2 z=3
        . 
        
        x=□
        
        y=□
        
        z=□ (2025)

    FAQs

    What is the matrix form ax + b? ›

    Matrix Equation Ax=b Overview:

    Here, A represents a matrix, x is a column vector, and b is the resulting vector after the multiplication of A and x. Specifically, A is an m × n m \times n m×n matrix, meaning it has m rows and n columns.

    How do you find the solution to the linear system Ax B? ›

    One way to find a particular solution to the equation Ax = b is to set all free variables to zero, then solve for the pivot variables. The general solution to Ax = b is given by xcomplete = xp + xn, where xn is a generic vector in the nullspace.

    How to solve matrix equations for x? ›

    How to Solve Matrix Equation?
    1. Write the system as matrix equation AX = B.
    2. Find the inverse, A-1.
    3. Multiply it by the constant matrix B to get the solution. i.e., X = A-1B.

    What are the steps in solving inverse matrix? ›

    To calculate the inverse of a matrix, we have to follow these steps:
    1. First, we need to find the matrix of minors.
    2. Now change that matrix into a matrix of cofactors.
    3. Now find the adjoint of the matrix.
    4. At the end, multiply by 1/determinant.

    What is a and b in y, ax, b? ›

    A linear function is a function of the form f(x) = ax + b, where a and b are real numbers. Here, a represents the gradient of the line, and b represents the y-axis intercept (which is sometimes called the vertical intercept).

    How do you find B in a matrix? ›

    To find out what matrix 𝐵 is, we need to isolate it. We need to get it by itself. We do that by multiplying by the inverse matrix 𝐴 on both sides of the equation. The inverse matrix 𝐴 times matrix 𝐴 will give us an identity matrix that leaves only 𝐵 on the left side.

    What does B mean in matrices? ›

    So, b' is a row vector. Note that b' is the transpose of b. By convention, vectors are printed as lower case bold face letters, and row vectors are represented as the transpose of column vectors.

    How to know if a matrix is an inverse? ›

    Requirements to have an Inverse
    1. The matrix must be square (same number of rows and columns).
    2. The determinant of the matrix must not be zero (determinants are covered in section 6.4). This is instead of the real number not being zero to have an inverse, the determinant must not be zero to have an inverse.

    What is the solution of the matrix equation ax b? ›

    If A is a square matrix, then if A is invertible every equation Ax = b has one and only one solution. Namely, x = A'b. 2. If A is not invertible, then Ax = b will have either no solution, or an infinite number of solutions.

    How do I find the solution to a system of equations? ›

    Solving systems of equations by substitution follows three basic steps. Step 1: Solve one equation for one of the variables. Step 2: Substitute this expression into the other equation, and solve for the missing variable. Step 3: Substitute this answer into one of the equations in order to solve for the other variable.

    How to use inverse of matrix to solve system of equations? ›

    A General Note: Solving a System of Equations Using the Inverse of a Matrix. Given a system of equations, write the coefficient matrix A , the variable matrix X , and the constant matrix B . Then AX=B A X = B . Multiply both sides by the inverse of A to obtain the solution.

    What is the formula for the inverse of a matrix? ›

    If A is an n×n n × n matrix and B is an n×n n × n matrix such that AB=BA=In A B = B A = I n , then B=A−1 B = A − 1 , the multiplicative inverse of a matrix A .

    How to solve matrices step by step? ›

    Step 1: Find the matrix of minors for the given matrix. Step 2: Transform the minor matrix so obtained into the matrix of cofactors. Step 3: Find the adjoint matrix by taking the transpose of the cofactor matrix. Step 4: Finally divide the adjoint of a matrix by its determinant.

    How do you use inverse operations to solve equations? ›

    Let's look at some examples to show how inversion works. Take this simple addition problem: 4 + 3 = 7. If we want to reverse the addition, we just subtract 7 - 3 = 4 and we are back to where we started. The same is true for multiplication and division: 2 * 8 = 16 and 16 / 8 = 2.

    How can a matrix be used to solve a system of equations? ›

    We will use a matrix to represent a system of linear equations. We write each equation in standard form and the coefficients of the variables and the constant of each equation becomes a row in the matrix. Each column then would be the coefficients of one of the variables in the system or the constants.

    How do you solve inverse matrix problems? ›

    First, we have to find the minor matrix for the given numbers. After getting the minor matrix, we have to get the cofactors matrix. Then the adjoint of the matrix will be calculated by the transpose of the matrix. And lastly, we have to divide the adjoint by the determinants to get the inverse of a matrix.

    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Edwin Metz

    Last Updated:

    Views: 5956

    Rating: 4.8 / 5 (58 voted)

    Reviews: 81% of readers found this page helpful

    Author information

    Name: Edwin Metz

    Birthday: 1997-04-16

    Address: 51593 Leanne Light, Kuphalmouth, DE 50012-5183

    Phone: +639107620957

    Job: Corporate Banking Technician

    Hobby: Reading, scrapbook, role-playing games, Fishing, Fishing, Scuba diving, Beekeeping

    Introduction: My name is Edwin Metz, I am a fair, energetic, helpful, brave, outstanding, nice, helpful person who loves writing and wants to share my knowledge and understanding with you.