Problem 47 Solve each system by the elimina... [FREE SOLUTION] (2025)

Chapter 7: Problem 47

Solve each system by the elimination method. Check each solution. $$ \begin{array}{l} 3 x=3+2 y \\ -\frac{4}{3} x+y=\frac{1}{3} \end{array} $$

Short Answer

Expert verified

The solution is \(x = 1\) and \(y = 0\). The solution checks out.

Step by step solution

01

- Rewrite the Equations in Standard Form

Rewrite both equations in the form Ax + By = C.The first equation: \(3x = 3 + 2y\) becomes \(3x - 2y = 3\)The second equation: \(-\frac{4}{3}x + y = \frac{1}{3}\) remains unchanged.

02

- Eliminate Fractions

To eliminate fractions in the second equation, multiply every term by 3:\(-\frac{4}{3}x + y = \frac{1}{3}\) becomes \(-4x + 3y = 1\).

03

- Combine Both Equations

Now the system is:\(3x - 2y = 3$$-4x + 3y = 1\)We will use the elimination method to solve this system.

04

- Make the Coefficients of y the Same

To eliminate one variable, we need to make the coefficients of y the same. Multiply the first equation by 3 and the second equation by 2:\(3(3x - 2y) = 3(3)\) becomes \(9x - 6y = 9$$2(-4x + 3y) = 2(1)\) becomes \(-8x + 6y = 2\)

05

- Add the Equations

Add the modified equations to eliminate y:\((9x - 6y) + (-8x + 6y) = 9 + 2\)This simplifies to:\(x = 11\)

06

- Solve for y

Substitute \(x = 1\) back into one of the original equations to solve for y. Using \(3x - 2y = 3\):\(3(1) - 2y = 3\)Simplify and solve for y:\(3 - 2y = 3$$-2y = 0$$y = 0\)

07

- Check the Solution

Substitute \(x = 1\) and \(y = 0\) back into the original equations to check the solution.First equation: \(3x = 3 + 2y$$3(1) = 3 + 2(0)\) is true.Second equation: \(-\frac{4}{3}x + y = \frac{1}{3}$$-\frac{4}{3}(1) + 0 = \frac{1}{3}\) is true.

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Solving Systems of Equations

When solving systems of equations, you deal with two or more equations that share the same variables. Typically, the goal is to find the values of these variables that satisfy all the given equations at once.
There are different methods to solve such systems, and some popular ones include:

  • Graphical Method
  • Substitution Method
  • Elimination Method

In this case, we'll concentrate on the elimination method.
The main idea behind the elimination method is to manipulate the equations in such a way that adding (or subtracting) them eliminates one of the variables.
This simplifies the system to a single equation with one unknown, which is easier to solve.

Elimination Method

The elimination method is an effective way to solve systems of equations, especially when the equations are already in standard form. Here's a step-by-step approach:
1. **Rewrite in Standard Form**: Ensure each equation is in the form Ax + By = C. This means all variable terms are on one side, and constants are on the other side.
For example:

  • Original: \(3x = 3 + 2y\)
  • Standard Form: \(3x - 2y = 3\)

2. **Eliminate Fractions:** If any equations have fractions, it's helpful to clear them by multiplying each term by the least common denominator.
For example, the second equation: \(-\frac{4}{3}x + y = \frac{1}{3}\) becomes \(-4x + 3y = 1\) after multiplying by 3.
3. **Match Coefficients:** Adjust the coefficients of one of the variables so they can cancel each other when the equations are added or subtracted.
For instance, we can multiply the first equation by 3 to get \(9x - 6y = 9\) and the second by 2 to get \(-8x + 6y = 2\).
4. **Add or Subtract Equations:** Finally, add or subtract the modified equations to eliminate one variable, leaving a simpler equation to solve. In our example, adding gives us \(x = 11\).
This new equation can then be used to find the remaining variable.

Algebraic Equations

Algebraic equations are mathematical statements that involve variables and constants connected by equality signs. They form the basis of the systems we are solving.
Here's a quick rundown:

  • **Univariate Equations**: Involving one variable (e.g., \(3x + 2 = 11\))
  • **Multivariate Equations**: Involving two or more variables (e.g., \(2x + y = 5\))

When dealing with systems of algebraic equations, it’s crucial to ensure
1. **Consistency**: The system has at least one solution.
2. **Compatibility**: The relationships described by the equations must coexist.
3. **Simplification**: Many times equations need simplification (like eliminating fractions) to make them easier to manipulate.
Working through each step methodically helps in solving the system accurately. For example, once you find \(x = 11\), you substitute this back into one of the original equations to find the value of \(y\). This process ensures that the values derived satisfy all original equations.
After solving, always double-check your solutions by plugging them back into the original equations to verify their correctness.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept

Problem 47 Solve each system by the elimina... [FREE SOLUTION] (2025)

FAQs

How do you solve for the solution of a system? ›

Solving systems of equations by substitution follows three basic steps. Step 1: Solve one equation for one of the variables. Step 2: Substitute this expression into the other equation, and solve for the missing variable. Step 3: Substitute this answer into one of the equations in order to solve for the other variable.

How do you find a system with no solution? ›

A graph with no solution will have functions that do not all intersect at any point. If the system consists of two functions, then there will be no points of intersection. A system of two linear equations has no solution if the lines are parallel.

What is an example of the elimination method? ›

For example, let us solve two equations 2x - y = 4 → (1) and 4x - 2y = 7 → (2) by the elimination method. In order to make the x coefficients equal in both the equations, we multiply equation (1) by 2 and equation (2) by 1. By doing so we get, 4x - 2y = 8 → (3) and 4x - 2y = 7 → (4).

What is an example of a solution to a system of equations? ›

A solution to a system of linear equations is a set of values for the variables which makes all the equations true. For example, x = 13, y = 29 is a solution to { 5x - 2y = 7 -2x + y = 3 } .

What are the three types of solutions for a system of equations? ›

An independent system has exactly one solution pair. (A solution should be a point where two lines intersect) A dependent system has infinitely many solutions (The line coincides each other and they are the same line) An inconsistent system has no solution.

What is the formula for no solution? ›

Condition for No Solution:

Considering the pair of linear equations by two variables u and v. Therefore a1, b1, c1, a2, b2, c2 are real numbers. If (a1/a2) = (b1/b2) ≠ (c1/c2), then this will result in no solution.

How to solve a system of equations without elimination? ›

Substitution Method

To solve a system of equations by substitution, solve one of the equations for a variable, for example x. Then replace that variable in the other equation with the terms you deemed equal and solve for the other variable, y. The solution to the system of equations is always an ordered pair.

How to tell if a system has a solution? ›

In other words, the solution is the point where the two lines intersect. To verify whether a point is a solution to a system or not, we will either determine whether it is the point of intersection of two lines on a graph or we will determine whether or not the point lies on both lines algebraically.

How to solve by elimination? ›

To Solve a System of Equations by Elimination

Write both equations in standard form. If any coefficients are fractions, clear them. Make the coefficients of one variable opposites. Decide which variable you will eliminate.

Why do we solve by elimination? ›

The elimination method is one of the most widely used techniques for solving systems of equations. Why? Because it enables us to eliminate or get rid of one of the variables, so we can solve a more simplified equation.

What is the process of elimination in problem solving? ›

Author. , Blogger . The process of elimination is a logical method used to narrow down a list of possibilities or options by systematically eliminating the ones that are unlikely or incorrect. It is often employed in problem-solving, decision-making, and deduction processes.

How to solve a system of equations by elimination through multiplication? ›

Step 1: Put the equations in Standard Form. Step 2: Determine which variable to eliminate. Step 3: Multiply the equations and solve. Step 4: Plug back in to find the other variable.

How do you do elimination by addition? ›

To solve a system of two linear equations in two variables by addition, Write, if necessary, both equations in general form, ax+by=c. If necessary, multiply one or both equations by factors that will produce opposite coefficients for one of the variables. Add the equations to eliminate one equation and one variable.

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Rev. Leonie Wyman

Last Updated:

Views: 5958

Rating: 4.9 / 5 (59 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Rev. Leonie Wyman

Birthday: 1993-07-01

Address: Suite 763 6272 Lang Bypass, New Xochitlport, VT 72704-3308

Phone: +22014484519944

Job: Banking Officer

Hobby: Sailing, Gaming, Basketball, Calligraphy, Mycology, Astronomy, Juggling

Introduction: My name is Rev. Leonie Wyman, I am a colorful, tasty, splendid, fair, witty, gorgeous, splendid person who loves writing and wants to share my knowledge and understanding with you.